On the Use of Gradient Space Eigenvalues for Rotation Invariant Texture Classification

نویسندگان

  • Mike J. Chantler
  • Ged McGunnigle
چکیده

Many image-rotation invariant texture classification approaches have been presented previously. This paper proposes a novel scheme that is surface-rotation invariant. It uses the eigenvalues of a surface’s gradient-space distribution as its features. Unlike the partial derivatives, from which they are computed, these eigenvalue features are invariant to surface rotation. First we show that a simple classifier using a single isotropic feature (grey-level standard deviation) is not invariant to surface rotation. Then a practical surface rotation invariant classifier that uses photometric stereo to estimate surface derivatives is developed. Results for both classifiers are presented.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

New Improvement in Interpretation of Gravity Gradient Tensor Data Using Eigenvalues and Invariants: An Application to Blatchford Lake, Northern Canada

Recently, interpretation of causative sources using components of the gravity gradient tensor (GGT) has had a rapid progress. Assuming N as the structural index, components of the gravity vector and gravity gradient tensor have a homogeneity degree of -N and - (N+1), respectively. In this paper, it is shown that the eigenvalues, the first and the second rotational invariants of the GGT (I1 and ...

متن کامل

Combining Gradient and Albedo Data for Rotation Invariant Classification of 3D Surface Texture

We present a new texture classification scheme which is invariant to surface-rotation. Many texture classification approaches have been presented in the past that are image-rotation invariant, However, image rotation is not necessarily the same as surface rotation. We have therefore developed a classifier that uses invariants that are derived from surface properties rather than image properties...

متن کامل

New Texture Signatures and Their Use in Rotation Invariant Texture Classification 1

In this paper, we present a theoretically and computationally simple but efficient approach for rotation invariant texture classification. This method is based on new texture signatures extracted from spectrum. Rotation invariant texture features are obtained based on the extension of the derived signatures. The features are tested with 1000 randomly rotated samples of 20 Brodatz texture classe...

متن کامل

Rotation-invariant texture classification using a complete space-frequency model

A method of rotation-invariant texture classification based on a complete space-frequency model is introduced. A polar, analytic form of a two-dimensional (2-D) Gabor wavelet is developed, and a multiresolution family of these wavelets is used to compute information-conserving microfeatures. From these microfeatures a micromodel, which characterizes spatially localized amplitude, frequency, and...

متن کامل

Affine-Gradient Based Local Binary Pattern Descriptor for Texture Classification

We present a novel Affine-Gradient based Local Binary Pattern (AGLBP) descriptor for texture classification. It is very hard to describe complicated texture using single type information, such as Local Binary Pattern (LBP), which just utilizes the sign information of the difference between pixel and its local neighbors. Our descriptor has three characteristics: 1) In order to make full use of t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000